4.4 Article

In vitro effect of adenovirus-mediated human gamma interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia

Journal

HEMATOLOGICAL ONCOLOGY
Volume 24, Issue 3, Pages 151-158

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/hon.779

Keywords

adenoviral vector; hIFN-gamma; BMSCs; gene therapy

Ask authors/readers for more resources

For developing gene therapy for chronic myelogenous leukemia (CML), we evaluated the feasibility of using autologous bone marrow stromal cells (BMSCs) of one CML patient as a target cell population and studied the efficiency of recombinant adenovirus-mediated human Gamma Interferon (hIFN-gamma) gene transfer into BMSCs. BMSCs can be readily obtained, expanded, and successfully transduced with adenoviral vectors in vitro. We studied the in vitro expression of hIFN-gamma in human BMSCs following transduction with Ad/hIFN-gamma. On transduction of BMSCs at a MOI of 50, the expression and secretion of hIFN-gamma were achieved as high as 5492 +/- 1660 similar to 50647 +/- 4049 ng/10(6) cells per 24 h over the course of 3 weeks. We further studied the effects of hIFN-gamma produced by transduced BMSCs on the proliferation of the human leukemia cell line K562 cells in vitro, proliferation of K562 cells was markedly inhibited in the experimental groups as compared with the other two control groups after 5 days of coculture. We also found that the percentage of K562 cells in the G, phase of cell cycle can be increased by treatment of hIFN-gamma produced by Ad/hIFN-gamma transduced BMSCs, but the percentage of K562 cells in the S phase of cell cycle can be decreased in the same time. Apoptosis rate of K562 cells in the experimental groups was 30.8 +/- 8.5%, as compared with the other two control groups (5.6 +/- 1.3% and 5.5 +/- 0.8%, respectively) (p < 0.01). Our results indicate that hIFN-gamma gene engineered BMSCs of CML donors could be successfully established and that local production of hIFN-gamma is sufficiently to inhibit the proliferation of K562 cells and induce apoptosis of K562 cells in vitro, suggesting an important potential use in the clinical gene therapy of CML. Copyright (c) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available