4.7 Article

Homology model of RSK2 N-terminal kinase domain, structure-based identification of novel RSK2 inhibitors, and preliminary common pharmacophore

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 14, Issue 17, Pages 6097-6105

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2006.05.001

Keywords

ribosomal S6 kinase 2; homology model; ATP-binding site; virtual screening; ligand docking; pharmacophore

Funding

  1. Intramural NIH HHS Funding Source: Medline
  2. NCI NIH HHS [N01-CO-12400] Funding Source: Medline

Ask authors/readers for more resources

Ribosomal S6 kinase 2 (RSK2) is a serine/threonine kinase that plays a role in human cancer and Coffin-Lowry syndrome and is comprised of two nonidentical kinase domains, each domain with its own ATP-binding site. RSK2 can be inactivated by different types of small organic molecules. Potent RSK2 inhibitors include the two classic bisindole maleimide PKC inhibitors, Ro31-8220 and GF109203X, and the natural product SL0101 that was shown to bind specifically to the ATP pocket of the N-terminal domain (NTD). In this paper, we present an atomic model of the RSK2 NTD (residues 68-323), which was built to simultaneously bind the distinctive molecular scaffolds of SL0101, Ro31-8220, and GF109203X. The RSK2 NTD model was used to identify two novel RSK2 inhibitors from the National Cancer Institute open chemical repository and to develop a preliminary structure-based pharmacophore model. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available