4.3 Article

An analysis of contact deformation of auxetic composites

Journal

MECHANICS OF COMPOSITE MATERIALS
Volume 42, Issue 5, Pages 477-484

Publisher

SPRINGER
DOI: 10.1007/s11029-006-0058-8

Keywords

adaptive mode; contact deformation; auxetic materials; self-locking effect; finite-element simulation; anisotropy

Ask authors/readers for more resources

The adaptive mode of frictional interaction has been studied as a self-locking effect upon contact deformation of isotropic and anisotropic auxetic materials with a negative Poisson ratio. This effect manifests itself in the fact that the bearing capacity of the joint rises with increasing shear load. In particular, the parameters of stress state (contact load, tangential stresses, slippage, etc.) were determined for a double-lap joint under conditions of compression with or without shear. The contact interaction was analyzed by the finite-element method for three profiles of symmetrically located contact elements (plane, cylindrical, and wedge-shaped). The Poisson ratio was varied within the range theoretically admissible for isotropic elastic media. Analogous calculations were also performed for a joint with a deformed element made of an anisotropic auxetic composite, whose reinforcement angle was varied. The maximum loads, tangential stresses, and slippage are obtained as nonlinear functions of Poisson ratio (in the isotropic case) and reinforcement angle of the composite material. The stress concentration and the increased ultimate shear forces are also estimated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available