4.4 Article

Evaluation of α-D-mannopyranoside glycolipid micelles-lectin interactions by surface plasmon resonance method

Journal

GLYCOBIOLOGY
Volume 16, Issue 9, Pages 822-832

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwl014

Keywords

carbohydrates; glycolipidskinetics; lectins; micelles; surface plasmon resonance

Ask authors/readers for more resources

It is established that achieving higher binding affinities in carbohydrate-protein interactions requires multivalent presentations of the sugar ligands at the receptor binding site. Several inhibition, calorimetric, mass balance, and other studies have reiterated the beneficial effects of molecular level clustering of the sugar ligands for tight binding to the receptors. We have undertaken an effort to study the multivalent effects involving larger assemblies, represented by micelles, and their lectin interactions. The micelles were constituted with monomer bearing one- or two-sugar moieties at the monomolecular level and with varying the distances between the sugar moieties. Micellar aggregation studies and dynamic light scattering (DLS) studies afforded details of the aggregation numbers and the hydrodynamic diameters of various glycolipid (GL) micelles. The GL micelles were used as analytes of surface plasmon resonance (SPR) experiments on a lectin concanavalin A (Con A)-immobilized surface. SPR studies of the micellelectin interactions demonstrate that the ligand-receptor binding can be fit into the bivalent analyte model of interaction. Furthermore, micelles formed from two-sugar containing GLs are able to elicit favorable kinetic association rate constants in comparison to the micelles constituted with one-sugar containing GLs. The kinetic rate constants across the micelles and the effect of the sugar valencies in the GLs are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available