4.8 Article

E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells

Journal

CANCER RESEARCH
Volume 66, Issue 17, Pages 8680-8686

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-0557

Keywords

-

Categories

Funding

  1. Intramural NIH HHS Funding Source: Medline
  2. NCI NIH HHS [CA113677, CA108441] Funding Source: Medline

Ask authors/readers for more resources

The steroid receptor coactivator oncogene, amplified in breast cancer 1 (AIB1; also known as ACTR/RAC-3/TRAM-1/SRC-3/p/CIP), is amplified and overexpressed in a variety of epithelial tumors. AIB1 has been reported to have roles in both steroid-dependent and steroid-independent transcription during tumor progression. In this report, we describe that the cellular levels of AM are controlled through regulated proteasomal degradation. We found that serum withdrawal or growth in high cell density caused rapid degradation of AIB1 protein, but not mRNA, in immortalized cell lines. Proteasome inhibitors prevented this process, and high molecular weight ubiquitylated species of AIB1 were detected. Nuclear export was required for proteasomal degradation of AM and involved the ubiquitin ligase, E6AP. AIB1/E6AP complexes were detected in cellular extracts, and reduction of cellular E6AP levels with E6AP short interfering RNA prevented proteasomal degradation of AIB1. Conversely, overexpression of E6AP promoted AIB1 degradation. The COOH terminus of AIB1 interacted with E6AP in vitro and deletion of this region in AIB1 rendered it resistant to degradation in cells. From our results, we propose a model whereby signals promoted by changes in the cellular milieu initiate E6AP-mediated proteasomal degradation of AIB1 and thus contribute to the control of steady-state levels of this protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available