4.7 Article

Theory of self-assembly of microtubules and motors

Journal

PHYSICAL REVIEW E
Volume 74, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.74.031915

Keywords

-

Ask authors/readers for more resources

We derive a model describing spatiotemporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel, we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes an orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments. We derive the specific form of the interaction kernel from the detailed analysis of microscopic interaction of two filaments mediated by a moving molecular motor and extend our results to include variable motor density and motor attachment to the substrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available