4.7 Article

An angiotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy

Journal

CIRCULATION RESEARCH
Volume 99, Issue 5, Pages 528-536

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000240147.49390.61

Keywords

AT(1) receptor; YIPP motif; transactivation; EGFR; hypertrophy

Funding

  1. NHLBI NIH HHS [HL 73048, HL69020, HL67727, HL67724, 1 F32 HL080861, HL 33107, HL 59139] Funding Source: Medline

Ask authors/readers for more resources

We have shown previously that tyrosine 319 in a conserved YIPP motif in the C terminus of angiotensin II (Ang II) type 1 receptors (AT(1)Rs) is essential for transactivation of epidermal growth factor receptor ( EGFR) in vitro. We hypothesized that the signaling mechanism mediated through the specific amino acid sequence in the G protein-coupled receptor plays an important role in mediating cardiac hypertrophy in vivo. Transgenic mice with cardiac-specific overexpression of wild-type AT(1)R (Tg-WT) and an AT1R with a mutation in the YIPP motif (Tg-Y319F) were studied. Tg-Y319F mice developed no significant cardiac hypertrophy, in contrast to the significant development of hypertrophy in Tg-WT mice. Expression of fetal-type genes, such as atrial natriuretic factor, was also significantly lower in Tg-Y319F than in Tg-WT mice. Infusion of Ang II caused an enhancement of hypertrophy in Tg-WT mice but failed to induce hypertrophy in Tg-Y319F mice. Left ventricular myocardium in Tg-Y319F mice developed significantly less apoptosis and fibrosis than that in Tg-WT mice. EGFR phosphorylation was significantly inhibited in Tg-Y319F mice, confirming that EGFR was not activated in Tg-Y319F mouse hearts. In contrast, activation/phosphorylation of protein kinase C, STAT3, extracellular signal-regulated kinase, and Akt and translocation of G alpha q/11 to the cytosolic fraction were maintained in Tg-Y319F hearts. Furthermore, a genetic cross between Tg-WT and transgenic mice with cardiac-specific overexpression of dominant negative EGFR mimicked the phenotype of Tg-Y319F mice. In conclusion, overexpression of AT(1)-Y319F in cardiac myocytes diminished EGFR transactivation and inhibited a pathological form of cardiac hypertrophy. The YIPP motif in the AT1R plays an important role in mediating cardiac hypertrophy in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available