4.6 Article

Toward computational materials design: The impact of density functional theory on materials research

Journal

MRS BULLETIN
Volume 31, Issue 9, Pages 659-665

Publisher

SPRINGER HEIDELBERG
DOI: 10.1557/mrs2006.174

Keywords

computation; density functional theory; modeling; nanoscale; simulation

Ask authors/readers for more resources

The development of modern materials science has led to a growing need to understand the phenomena determining the properties of materials and processes on an atomistic level. The interactions between atoms and electrons are governed by the laws of quantum mechanics; hence, accurate and efficient techniques for solving the basic quantum-mechanical equations for complex many-atom, many-electron systems must be developed. Density functional theory (DFT) marks a decisive breakthrough in these efforts, and in the past decade DFT has had a rapidly growing impact not only on fundamental but also industrial research. This article discusses the fundamental principles of DFT and the highly efficient computational tools that have been developed for its application to complex problems in materials science. Also highlighted are state-of-the-art applications in many areas of materials research, such as structural materials, catalysis and surface science, nanomaterials, and biomaterials and geophysics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available