4.8 Article

Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate

Journal

ANALYTICAL CHEMISTRY
Volume 78, Issue 17, Pages 6109-6114

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0606406

Keywords

-

Ask authors/readers for more resources

A procedure for the automated determination of isotopic abundances of silicon from biogenic and lithogenic particulate matter and from dissolved silicon in fresh or saltwaters is reported. Samples are purified using proven procedures through the reaction of Si with acidified ammonium molybdate, followed by precipitation with triethylamine and combustion of the precipitate to yield silicon dioxide. The silicon dioxide is converted to cesium hexafluosilicate by dissolution in hydrogen fluoride and the addition of cesium chloride. Isotopic analysis is accomplished by decomposing the cesium hexafluosilicate with concentrated sulfuric acid to generate silicon tetrafluoride gas. Silicon tetrafluoride is purified cryogenically and analyzed on a gas source isotope ratio mass spectrometer. Yields of silicon tetrafluoride are >99.5%. The procedure can be automated by modifying commercial inlet systems designed for carbonate analysis. The procedure is free of memory effects and isotopic biases. Reproducibility is +/- 0.03-0.10% for a variety of natural and synthetic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available