4.7 Article

Attenuation of nicotine-induced rewarding effects in A2A knockout mice

Journal

NEUROPHARMACOLOGY
Volume 51, Issue 3, Pages 631-640

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2006.05.005

Keywords

A(2A) adenosine receptors; knockout; nicotine; microdialysis; dopamine

Funding

  1. NIDA NIH HHS [DA016768] Funding Source: Medline

Ask authors/readers for more resources

The non-selective A(2A) antagonist caffeine has been reported to modify nicotine-induced locomotor and reinforcing effects. In the present study, we have investigated the specific role of A2A adenosine receptors in the behavioural responses induced by nicotine by using genetically modified mice lacking A2A adenosine receptors. Acute nicotine administration induced a similar decrease of locomotor activity in A2A knockout mice and wild-type littermates. Acute antinociceptive responses elicited by nicotine in the tail-immersion and hot-plate tests were unaffected in these mutant mice. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine-induced conditioned place preference was suppressed in A2A knockout mice. Accordingly, in vivo microdialysis studies revealed that the extracellular levels of dopamine in the nucleus accumbens were not increased after nicotine administration in mutant mice. Wild-type and A2A knockout mice were trained in conditioned taste aversion procedure in which drinking a saccharin or saline solution was paired with nicotine or saline injections. A similar reduction in the intake of nicotine-paired solution in this paradigm was obtained in both genotypes. Finally, the administration of the nicotinic antagonist mecamylamine in nicotine-dependent mice precipitated a similar withdrawal syndrome in both genotypes. Together, the present results identify A2A adenosine receptors as an important factor that contributes to the rewarding properties of nicotine. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available