4.6 Article

A missense mutation in the WD40 domain of murine Lyst is linked to severe progressive Purkinje cell degeneration

Journal

ACTA NEUROPATHOLOGICA
Volume 112, Issue 3, Pages 267-276

Publisher

SPRINGER
DOI: 10.1007/s00401-006-0092-6

Keywords

neurodegeneration; Purkinje cell degeneration; lysosomal storage disorder; Chediak-Higashi syndrome; beige; Lyst

Ask authors/readers for more resources

Disturbance of intracellular trafficking plays a major role in several neurodegenerative disorders including Alzheimer or Parkinson's disease. The Chediak-Higashi syndrome (CHS), a life-threatening autosomal recessive disease with frequent mutations in the LYST gene, and its animal model, the beige mouse, are both characterized by lysosomal defects with accumulation of giant lysosomes. Clinically they manifest as hypopigmentation, abnormal bleeding and increased susceptibility to infection with various degrees of involvement of the nervous system. In the course of a recessive N-ethyl-N-nitrosurea (ENU) mutagenesis screen, we identified the first murine missense mutation in the lysosomal trafficking regulator gene (Lyst(Ing3618)) located at a highly conserved position in the WD40 protein domain. Nearly all described human Lyst alleles lead to protein truncation and fatal childhood CHS. Only four different missense mutations have been reported in patients with adolescent or adult forms of CHS involving the nervous system. Interestingly, the Lyst(Ing3618) model presents with a predominant neurodegenerative phenotype with progressive degeneration and loss of Purkinje cells and lacks severe impairment of the immune system. Therefore, the Lyst(Ing3618) supercript stopallele could represent a new model for adult CHS with neurological impairment. It could also provide an important tool to elucidate the role of neuronal lysosomal trafficking in the pathophysiology of neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available