4.5 Article

Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23

Journal

JOURNAL OF CELL SCIENCE
Volume 119, Issue 17, Pages 3676-3685

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.03090

Keywords

nucleolus; B23/NPM; phosphorylation; FRAP; dynamics; mitosis

Categories

Ask authors/readers for more resources

B23 (or nucleophosmin, NPM) is a multifunctional protein involved in ribosome biogenesis, control of centrosome duplication and in sensing cellular stress. It is phosphorylated during interphase by casein kinase 2 (CK2) and during mitosis by cyclin-dependent kinase (CDK). In this study we have addressed the role of these phosphorylation events in the dynamics and location of protein B23. Mutation of the CK2 phosphorylation site to alanine results in slower recovery of the mutant compared with the wild-type protein as measured by fluorescence recovery after photobleaching (FRAP). Immunofluorescence studies using an antibody against phosphorylated Thr199 revealed that B23 is phosphorylated at this CDK1 site at the start of mitosis and is dephosphorylated during anaphase. The CDK1-type phosphorylation sites are in the nucleic acid binding region of B23 and may contribute to its dissociation from the nucleolus during mitosis. A Thr to Glu mutant of the CDK1-type sites as well as other members of the nucleoplasmin family that lack the C-terminal nucleic-acid-binding region showed a greater mobility and/or faster recovery than wild-type B23.1, the longer variant. These results provide evidence that phosphorylation at these sites reduces the affinity of B23 for nucleolar components and might be a factor in regulating its location during the cell cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available