4.5 Article

A new model for the determination of fluid status and body composition from bioimpedance measurements

Journal

PHYSIOLOGICAL MEASUREMENT
Volume 27, Issue 9, Pages 901-919

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0967-3334/27/9/011

Keywords

fluid status; body composition; bioimpedance; dialysis; kidney failure; dry weight; hydration state; overhydration

Ask authors/readers for more resources

In patients with end stage renal failure, control of the fluid status of the body is lost and fluid accumulates continuously. By dialysis therapy, excess fluid can be removed, but there are no reliable methods to establish the amount of excess fluid to be removed. Severe and even lethal complications may be the consequence of longer term deviations from a normal fluid status in dialysis patients, but also in other patient groups. Therefore, a large medical need exists for a precise and pragmatic method to determine fluid status. Bioimpedance measurement, today mainly used for nutrition status assessment, is regarded as an interesting candidate method for fluid status determination. This paper presents a four-compartment model of the human body, developed to derive information on fluid status from extra-and intracellular volumes measured by bioimpedance spectroscopy. The model allows us to determine weights of each of four compartments (overhydration, fat, muscle and remaining 'basic' components) by analyzing extra- and intracellular water volumes in different tissues of the body. Thereby fluid status (overhydration volume, normohydrated weight of the patient) as well as nutrition and fitness status (lean body, fat and muscle mass) can be determined quantitatively from a single measurement. A preliminary evaluation of the performance of a system consisting of a bioimpedance spectrum analyzer and the four-compartment model is also provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available