4.8 Article

First direct observation of Dirac fermions in graphite

Journal

NATURE PHYSICS
Volume 2, Issue 9, Pages 595-599

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys393

Keywords

-

Ask authors/readers for more resources

Originating from relativistic quantum field theory, Dirac fermions have been invoked recently to explain various peculiar phenomena in condensed-matter physics, including the novel quantum Hall effect in graphene(1,2), the magnetic-field-driven metal - insulator-like transition in graphite(3,4), super. uidity in He-3 ( ref. 5) and the exotic pseudogap phase of high-temperature superconductors(6,7). Despite their proposed key role in those systems, direct experimental evidence of Dirac fermions has been limited. Here, we report the first direct observation of relativistic Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H, which coexist with quasiparticles that have a parabolic dispersion near another BZ corner K. In addition, we also report a large electron pocket that we attribute to defect-induced localized states. Thus, graphite presents a system in which massless Dirac fermions, quasiparticles with finite effective mass and defect states all contribute to the low-energy electronic dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available