4.0 Article

Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate modified hydrogels

Journal

TISSUE ENGINEERING
Volume 12, Issue 9, Pages 2695-2706

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.2006.12.2695

Keywords

-

Ask authors/readers for more resources

Human embryonic stem cells (hESCs) have the potential to self-renew and generate multiple cell types, producing critical building blocks for tissue engineering and regenerative medicine applications. Here, we describe the efficient derivation and chondrogenic differentiation of mesenchymal-like cells from hESCs. These cells exhibit mesenchymal stem cell (MSC) surface markers, including CD29, CD44, CD105, and platelet-derived growth factor receptor-a. Under appropriate growth conditions, the hESC-derived cells proliferated without phenotypic changes and maintained MSC surface markers. The chondrogenic capacity of the cells was studied in pellet culture and after encapsulation in poly( ethylene glycol)-diacrylate (PEGDA) hydrogels with exogenous extracellular proteins or arginine-glycine-aspartate (RGD)-modified PEGDA hydrogels. The hESC-derived cells exhibited growth factor dependent matrix production in pellet culture but did not produce tissue characteristic of cartilage morphology. In PEGDA hydrogels containing exogenous hyaluronic acid or type I collagen, no significant cell growth or matrix production was observed. In contrast, when these cells were encapsulated in RGD-modified poly(ethylene glycol) hydrogels, neocartilage with basophilic extracellular matrix deposition was observed within 3 weeks of culture, producing cartilage-specific gene up-regulation and extracellular matrix production. Our results indicate that precursor cells characteristic of a MSC population can be cultured from differentiating hESCs through embryoid bodies, thus holding great promise for a potentially unlimited source of cells for cartilage tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available