4.7 Article

Altered adipose and plasma sphingolipid metabolism in obesity - A potential mechanism for cardiovascular and metabolic risk

Journal

DIABETES
Volume 55, Issue 9, Pages 2579-2587

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db06-0330

Keywords

-

Funding

  1. NHLBI NIH HHS [R01HL071146] Funding Source: Medline

Ask authors/readers for more resources

The adipose tissue has become a central focus in the pathogenesis of obesity-mediated cardiovascular and metabolic disease. Here we demonstrate that adipose sphingolipid metabolism is altered in genetically obese (ob/ob) mice. Expression of enzymes involved in ceramide generation (neutral sphingomyelinase [NSMase], acid sphingomyelinase [ASMase], and serine-palmitoyl-transferase [SPT]) and ceramide hydrolysis (ceramidase) are elevated in obese adipose tissues. Our data also suggest that hyperinsulinemia and elevated tumor necrosis factor (TNF)-alpha associated with obesity may contribute to the observed increase in adipose NSMase, ASMase, and SPT mRNA in this murine model of obesity. Liquid chromatography/mass spectroscopy revealed a decrease in total adipose sphingomyelin and ceramide levels but an increase in sphingosine in ob/ob mice compared with lean mice. In contrast to the adipose tissue, plasma levels of total sphingomyelin, ceramide, sphingosine, and sphingosine 1-phosphate (SIP) were elevated in ob/ob mice. In cultured adipocytes, ceramide, sphingosine, and SIP induced gene expression of plasminogen activator inhibitor-1, TNF-alpha, monocyte chemoattractant protein-1, interleukin-6, and keratinocyte-derived chemokine. Collectively, our results identify a novel role for sphingolipids in contributing to the prothrombotic and proinflammatory phenotype of the obese adipose tissue currently believed to play a major role in the pathogenesis of obesity-mediated cardiovascular and metabolic disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available