4.5 Article

Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis

Journal

ACTA BIOCHIMICA ET BIOPHYSICA SINICA
Volume 38, Issue 9, Pages 646-652

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1745-7270.2006.00211.x

Keywords

quantum dot; endocytosis; nanostructure; atomic force microscopy

Ask authors/readers for more resources

While it has been well demonstrated that quantum dots (QDs) play an important role in biological labeling both in vitro and in vivo, there is no report describing the cellular nanostructure basis of receptor-mediated endocytosis. Here, nanostructure evolution responses to the endocytosis of transferrin (Tf)-conjugated QDs were characterized by atomic force microscopy (AFM). AFM-based nanostructure analysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptors and the nanostructure evolution is highly correlated with the cell membrane receptor-mediated transduction. Consistently, confocal microscopic and flow cytometry results have demonstrated the specificity and dynamic property of Tf-QD binding and internalization. We found that the internalization of Tf-QD is linearly related to time. Moreover, while the nanoparticles on the cell membrane increased, the endocytosis was still very active, suggesting that QD nanoparticles did not interfere sterically with the binding and function of receptors. Therefore, ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometer scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available