4.6 Article

Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath

Journal

PHYSICAL REVIEW B
Volume 74, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.125319

Keywords

-

Ask authors/readers for more resources

We present a technique for treating many particles moving inside a ballistic interferometer, under the influence of a quantum-mechanical environment (phonons, photons, Nyquist noise, etc.). Our approach is based on solving the coupled Heisenberg equations of motion of the many-particle system and the bath, and it is inspired by the quantum Langevin method known for the Caldeira-Leggett model. As a first application, we treat a fermionic Mach-Zehnder interferometer. In particular, we discuss the dephasing rate and present full analytical expressions for the leading corrections to the current noise, brought about by the coupling to the quantum bath. In contrast to a single-particle model, both the Pauli principle as well as the contribution of hole-scattering processes become important, and are automatically taken into account in this method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available