4.4 Article

The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 17, Issue 9, Pages 3978-3988

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E05-06-0532

Keywords

-

Categories

Ask authors/readers for more resources

Reactive oxygen species (ROS) generated by the NOX family of NADPH oxidases have been described to act as second messengers regulating cell growth and differentiation. However, such a function has hitherto not been convincingly demonstrated. We investigated the role of NOX-derived ROS in cardiac differentiation using mouse embryonic stem cells. ROS scavengers prevented the appearance of spontaneously beating cardiac cells within embryoid bodies. Downregulation of NOX4, the major NOX isoform present during early stages of differentiation, suppressed cardiogenesis. This was rescued by a pulse of low concentrations of hydrogen peroxide 4d before spontaneous beating appears. Mechanisms of ROS-dependent signaling included p38 mitogen-activated protein kinase (MAPK) activation and nuclear translocation of the cardiac transcription factor myocyte enhancer factor 2C (MEF2C). Our results provide first molecular evidence that the NOX family of NADPH oxidases regulate vertebrate developmental processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available