4.6 Article

Mobility of human immunodeficiency virus type 1 Pr55Gag in living cells

Journal

JOURNAL OF VIROLOGY
Volume 80, Issue 17, Pages 8796-8806

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.02159-05

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI052051, R01 AI52051] Funding Source: Medline

Ask authors/readers for more resources

Human immunodeficiency virus type 1 (HIV-1) assembly requires the converging of thousands of structural proteins on cellular membranes to form a tightly packed immature virion. The Gag polyprotein contains all of the determinants important for viral assembly and must move around in the cell in order to form particles. This work has focused on Gag mobility in order to provide more insights into the dynamics of particle assembly. Key to these studies was the use of several fluorescently labeled Gag derivatives. We used fluorescence recovery after photobleaching as well as photoactivation to determine Gag mobility. Upon expression, Gag can be localized diffusely in the cytoplasm, associated with the plasma membrane, or in virus-like particles (VLPs). Here we show that Gag VLPs are primarily localized in the plasma membrane and do not colocalize with CD63. We have shown using full-length Gag as well as truncation mutants fused to green fluorescent protein that Gag is highly mobile in live cells when it is not assembled into VLPs. Results also showed that this mobility is highly dependent upon cholesterol. When cholesterol is depleted from cells expressing Gag, mobility is significantly decreased. Once cholesterol was replenished, Gag mobility returned to wild-type levels. Taken together, results from these mobility studies suggest that Gag is highly mobile and that as the assembly process proceeds, mobility decreases. These studies also suggest that Gag assembly must occur in cholesterol-rich domains in the plasma membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available