4.6 Article

MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 5, Issue 9, Pages 2358-2365

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-06-0305

Keywords

-

Categories

Funding

  1. NCI NIH HHS [K08-CA090517] Funding Source: Medline

Ask authors/readers for more resources

Novel therapeutic approaches are urgently needed for high-stage neuroblastoma, a major therapeutic challenge in pediatric oncology. The majority of neuroblastoma tumors are p53 wild type with intact downstream p53 signaling pathways. We hypothesize that stabilization of p53 would sensitize this aggressive tumor to genotoxic chemotherapy via inhibition of MDM2, the primary negative upstream regulator of p53. We used pharmacologic inhibition of the MDM2-p53 interaction with the small-molecule inhibitor Nutlin and studied the subsequent response to chemotherapy in neuroblastoma cell lines. We did 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and terminal deoxynucleotidyl transferase assays to measure proliferation and apoptosis in several cell lines (IMR32, MYCN3, and JF) treated with combinations of cisplatin, etoposide, and Nutlin. We found consistent and robust decreases in proliferation and increases in apoptosis with the addition of Nutlin 3a to etoposide or cisplatin in all cell lines tested and no response to the inactive Nutlin 3b enantiomer. We also show a rapid and robust accumulation of p53 protein by Western blot in these cells within 1 to 2 hours of treatment. We conclude that MDM2 inhibition dramatically enhances the activity of genotoxic drugs in neuroblastoma and should be considered as an adjuvant to chemotherapy for this aggressive pediatric cancer and for possibly other p53 wild-type solid tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available