4.6 Article

Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 5, Issue 9, Pages 2182-2192

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-05-0428

Keywords

-

Categories

Ask authors/readers for more resources

Gliomas are highly lethal neoplasms that cannot be cured by currently available therapies. Temozolomide is a recently introduced alkylating agent that has yielded a significant benefit in the treatment of high-grade gliomas. However, either de novo or acquired chemoresistance occurs frequently and has been attributed to increased levels of O-6-methylguanine-DNA methyltransferase or to the loss of mismatch repair capacity. However, very few gliomas overexpress O-6-methylguanine-DNA methyltransferase or are mismatch repair-deficient, suggesting that other mechanisms may be involved in the resistance to temozolomide. The purpose of the present study was to generate temozolomide-resistant variants from a human glioma cell line (SNB-19) and to use large-scale genomic and transcriptional analyses to study the molecular basis of acquired temozolomide resistance. Two independently obtained temozolomide-resistant variants exhibited no cross-resistance to other alkylating agents [1,3-bis(2-chloroethyl)-1-nitrosourea and carboplatin] and shared genetic alterations, such as loss of a 2p region and loss of amplification of chromosome 4 and 16q regions. The karyotypic alterations were compatible with clonal selection of preexistent resistant cells in the parental SNB-19 cell line. Microarray analysis showed that 78 out of 17,000 genes were differentially expressed between parental cells and both temozolomide-resistant variants. None are implicated in known resistance mechanisms, such as DNA repair, whereas interestingly, several genes involved in differentiation were down-regulated. The data suggest that the acquisition of resistance to temozolomide in this model resulted from the selection of less differentiated preexistent resistant cells in the parental tumor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available