4.5 Article

Changes in stomatal conductance and net photosynthesis during phenological development in spring wheat: implications for gas exchange modelling

Journal

INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
Volume 51, Issue 1, Pages 37-48

Publisher

SPRINGER
DOI: 10.1007/s00484-006-0039-6

Keywords

modelling; phenology; photosynthesis; stomatal conductance; wheat

Ask authors/readers for more resources

Gas exchange was measured from 1 month before the onset of anthesis until the end of grain filling in field-grown spring wheat, Triticum aestivum L., cv. Vinjett, in southern Sweden. Two g (s) models were parameterised using these data: one Jarvis-type multiplicative g (s) model (J-model), and one combined stomatal-photosynthesis model (L-model). In addition, the multiplicative g (s) model parameterisation for wheat used within the European Monitoring and Evaluation Programme (EMEP-model) was tested and evaluated. The J-model performed well (R-2=0.77), with no systematic pattern of the residuals plotted against the driving variables. The L-model explained a larger proportion of the variation in g (s) data when observations of A (n) were used as input data (R-2=0.71) compared to when A (n) was modelled (R-2=0.53). In both cases there was a systematic model failure, with g (s) being over- and underestimated before and after anthesis, respectively. This pattern was caused by the non-parallel changes in g (s) and A (n) during plant phenological development, with A (n) both peaking and starting to decline earlier as compared to g (s) . The EMEP-model accounted for 41% of the variation in g (s) data, with g (s) being underestimated after anthesis. We conclude that, under the climatic conditions prevailing in southern Scandinavia, the performance of the combined stomatal-photosynthesis approach is hampered by the non-parallel changes in g (s) and A (n), and that the phenology function of the EMEP-model, having a sharp local maximum at anthesis, should be replaced by a function with a broad non-limiting period after anthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available