4.6 Article

Aldehydes release zinc from proteins. A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc

Journal

FEBS JOURNAL
Volume 273, Issue 18, Pages 4300-4310

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2006.05428.x

Keywords

acetaldehyde; acrolein; metallothionein; oxidative stress; zinc

Funding

  1. NIGMS NIH HHS [GM 065388] Funding Source: Medline

Ask authors/readers for more resources

Oxidative stress, lipid peroxidation, hyperglycemia-induced glycations and environmental exposures increase the cellular concentrations of aldehydes. A novel aspect of the molecular actions of aldehydes, e.g. acetaldehyde and acrolein, is their reaction with the cysteine ligands of zinc sites in proteins and concomitant zinc release. Stoichiometric amounts of acrolein release zinc from zinc-thiolate coordination sites in proteins such as metallothionein and alcohol dehydrogenase. Aldehydes also release zinc intracellularly in cultured human hepatoma (HepG2) cells and interfere with zinc-dependent signaling processes such as gene expression and phosphorylation. Thus both acetaldehyde and acrolein induce the expression of metallothionein and modulate protein tyrosine phosphatase activity in a zinc-dependent way. Since minute changes in the availability of cellular zinc have potent effects, zinc release is a mechanism of amplification that may account for many of the biological effects of aldehydes. The zinc-releasing activity of aldehydes establishes relationships among cellular zinc, the functions of endogenous and xenobiotic aldehydes, and redox stress, with implications for pathobiochemical and toxicologic mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available