4.7 Article

Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation

Journal

POLYMER DEGRADATION AND STABILITY
Volume 91, Issue 9, Pages 2163-2170

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2006.01.007

Keywords

recycling; degree of degradation; high-impact polystyrene; reprocessing; thermo-oxidation

Ask authors/readers for more resources

A simulation of the degradation of high-impact polystyrene (HIPS), occurring during service life and mechanical recycling, was performed by multiple processing and thermo-oxidative ageing. All samples were characterized by differential scanning calorimetry (DSC), melt mass-flow rate (MFR) measurements, tensile testing and infrared spectroscopy (FTIR). Multiple processing and thermo-oxidative ageing clearly alter the oxidative stability and the elongation at break of the materials. These changes observed at a macroscopic scale have been related to chemical alterations in the structure of HIPS. The polybutadiene phase was demonstrated to be the initiation point of the degradative processes induced by processing, service life and mechanical recycling. Thermo-oxidative degradation affects more severely the degree of degradation of the material, so it may be deduced that the changes occurring during service life of HIPS are the part of the life cycle that mostly affects its further recycling possibilities and performance in second-market applications. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available