4.6 Article

Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis

Journal

JOURNAL OF IMMUNOLOGY
Volume 177, Issue 5, Pages 3225-3234

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.177.5.3225

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI47206A, AI50099A] Funding Source: Medline
  2. PHS HHS [ACAEI0071] Funding Source: Medline

Ask authors/readers for more resources

Murine CMV (MCMV) encodes three viral genes that interfere with Ag presentation (VIPRs) to CD8 T cells, m04, m06, and m152. Because the functional impact of these genes during normal infection of C57BL/6 mice is surprisingly modest, we wanted to determine whether the VIPRs are equally effective against the entire spectrum of H-2(b)-restricted CD8 T cell epitopes. We also wanted to understand how the VIPRs interact at a functional level. To address these questions, we used a panel of MCMV mutants lacking each VIPR in all possible combinations, and CTL specific for 15 H-2(b)-restricted MCMV epitopes. Only expression of all three MCMV VIPRs completely inhibited killing by CTL specific for all 15 epitopes, but removal of any one VIPR enabled lysis by at least some CTL. The dominant interaction between the VIPRs was cooperation: m06 increased the inhibition of lysis achieved by either m152 or m04. However, for 1 of 15 epitopes m04 functionally antagonized m152. There was little differential impact of any of the VIPRs on K-b vs D-b, but a surprising degree of differential impact of the three VIPRs for different epitopes. These epitope-specific differences did not correlate with functional avidity, or with timing of VIPR expression in relation to Ag expression in the virus replication cycle. Although questions remain about the molecular mechanism and in vivo role of these genes, we conclude that the coordinated function of MCMV's three VIPRs results in a powerful inhibition of lysis of infected cells by CD8 T cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available