4.6 Article

A set of recombineering plasmids for gram-negative bacteria

Journal

GENE
Volume 379, Issue -, Pages 109-115

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2006.04.018

Keywords

recombination; bacteriophage lambda; gap-repair; functional genomics; gene knockouts; BAC engineering

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

We have constructed a set of plasmids that can be used to express recombineering functions in some gram-negative bacteria, thereby facilitating in vivo genetic manipulations. These plasmids include an origin of replication and a segment of the bacteriophage lambda genome comprising the red genes (exo, bet and gam) under their native control. These constructs do not require the anti-termination event normally required for Red expression, making their application more likely in divergent species. Some of the plasmids have temperature-sensitive replicons to simplify curing. In creating these vectors we developed two useful recombineering applications. Any gene linked to a drug marker can be retrieved by gap-repair using only a plasmid origin and target homologies. A plasmid origin of replication can be changed to a different origin by targeted replacement, to potentially alter its copy number and host range. Both these techniques will prove useful for manipulation of plasmids in vivo. Most of the Red plasmid constructs catalyzed efficient recombination in E. coli with a low level of uninduced background recombination. These Red plasmids have been successfully tested in Salmonella, and we anticipate that that they will provide efficient recombination in other related gram-negative bacteria. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available