4.6 Article

Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow

Journal

IEEE TRANSACTIONS ON ENERGY CONVERSION
Volume 21, Issue 3, Pages 717-724

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2006.874211

Keywords

real-time digital simulation; simulation model; torque oscillations; tower shadow; wind shear; wind turbine

Ask authors/readers for more resources

To determine the control structures and possible power quality issues, the dynamic torque generated by the blades of a wind turbine must be represented. This paper presents an analytical formulation of the generated aerodynamic torque of a three-bladed wind turbine including the effects of wind shear and tower shadow. The comprehensive model includes turbine-specific parameters such as radius, height, and tower dimensions, as well as the site-specific parameter, the wind shear exponent. The model proves the existence of a 3p pulsation due to wind shear and explains why it cannot be easily identified in field measurements. The proportionality constant between the torque and the wind speed is determined allowing direct aerodynamic torque calculation from, an equivalent wind speed. It is shown that the tower shadow effect is more dominant than the wind shear effect in determining the dynamic torque, although there is a small dc reduction in the torque oscillation due to wind shear. The model is suitable for real-time wind turbine simulation or other time domain simulation of wind turbines in power systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available