4.4 Article

Complexity analysis of stride interval time series by threshold dependent symbolic entropy

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 98, Issue 1, Pages 30-40

Publisher

SPRINGER
DOI: 10.1007/s00421-006-0226-5

Keywords

gait dynamics; neurodegenerative diseases; symbolic analysis; physiological complexity

Ask authors/readers for more resources

The stride interval of human gait fluctuates in complex fashion. It reflects the rhythm of the locomotor system. The temporal fluctuations in the stride interval provide us a non-invasive technique to evaluate the effects of neurological impairments on gait and its changes with age and disease. In this paper, we have used threshold dependent symbolic entropy, which is based on symbolic nonlinear time series analysis to study complexity of gait of control and neurodegenerative disease subjects. Symbolic entropy characterizes quantitatively the complexity even in time series having relatively few data points. We have calculated normalized corrected Shannon entropy (NCSE) of symbolic sequences extracted from stride interval time series. This measure of complexity showed significant difference between control and neurodegenerative disease subjects for a certain range of thresholds. We have also investigated complexity of physiological signal and randomized noisy data. In the study, we have found that the complexity of physiological signal was higher than that of random signals at short threshold values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available