4.8 Article

Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage

Journal

NATURE CELL BIOLOGY
Volume 8, Issue 9, Pages 1025-U109

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb1468

Keywords

-

Categories

Ask authors/readers for more resources

The nicotinamide adenine dinucleotide (NAD)-dependent deacetylase Sir2 (silent information regulator 2) regulates gene silencing in yeast and promotes lifespan extension during caloric restriction. The mammalian homologue of Sir2 (SirT1) regulates p53, NF-kappa B and Forkhead transcription factors, and is implicated in stress response. This report shows that the cell-cycle and apoptosis regulator E2F1 induces SirT1 expression at the transcriptional level. Furthermore, SirT1 binds to E2F1 and inhibits E2F1 activities, forming a negative feedback loop. Knockdown of SirT1 by small interference RNA (siRNA) increases E2F1 transcriptional and apoptotic functions. DNA damage by etoposide causes E2F1-dependent induction of SirT1 expression and knockdown of SirT1 increases sensitivity to etoposide. These results reveal a mutual regulation between E2F1 and SirT1 that affects cellular sensitivity to DNA damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available