4.6 Article

Prestack scalar reverse-time depth migration of 3D elastic seismic data

Journal

GEOPHYSICS
Volume 71, Issue 5, Pages S199-S207

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.2227519

Keywords

-

Ask authors/readers for more resources

Using two independent, 3D scalar reverse-time depth migrations, we migrate the reflected P- and S-waves in a prestack 3D, three-component (3-C), elastic seismic data volume generated with a P-wave source in a 3D model and recorded at the top of the model. Reflected P- and S-waves are extracted by divergence (a scalar) and curl (a 3-C vector) calculations, respectively, during shallow downward extrapolation of the elastic seismic data. The imaging time for the migrations of both the reflected P- and P-S converted waves at each point is the one-way P-wave traveltime from the source to that point. The divergence (the extracted P-waves) is reverse-time extrapolated using a finite-difference solution of the 3D scalar wave equation in a 3D P-velocity model and is imaged to obtain the migrated P-image. The curl (the extracted S-waves) is first converted into a scalar S-wavefield by taking the curl's absolute value as the absolute value of the scalar S-wavefield and assigning a positive sign if the curl is counter-clockwise relative to the source or a negative sign otherwise. This scalar S-wavefield is then reverse-time extrapolated using a finite-difference solution of the 3D scalar wave equation in a 3D S-velocity model, and it is imaged with the same one-way P-wave traveltime imaging condition as that used for the P-wave. This achieves S-wave polarity uniformity and ensures constructive S-wave interference between data from adjacent sources. The algorithm gives satisfactory results on synthetic examples for 3D laterally inhomogeneous models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available