4.4 Article

A surface-shape recognition system mimicking human mechanism for tactile sensation

Journal

ROBOTICA
Volume 24, Issue -, Pages 595-602

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0263574706002669

Keywords

tactile sensor; neuron model; associative model; contour recognition; surface-shape

Categories

Ask authors/readers for more resources

Tactile sensing is advantageous for the acquisition of local, proximal information such as the contact condition between a finger and an object. This type of sensing, however, is not suited for recognizing an entire object that is easily recognized by vision. The objective of this paper is to ease the limitations experienced in tactile sensing by using both a neural model based on the human tactile sensation and a tactile-oriented associative memory model to enable a robot to recognize object contours. In the model, first the direction vectors belonging to segments of the object contour are obtained from a filtered tactile pattern of the simulated neurons' excitation. Second, the vectors are quantized by the chain-symbolizing method and stored for use in a memory matrix that accumulates matrix-products between the vector and its transposition. In the recalling process, complete vectors are remembered even if some input vector elements are missing. In the experiments, a robotic manipulator equipped with a tactile sensor traces five types of contours, these being a circle, a square, a triangle, a star, and a hexagon. After the robot recalls the complete contours, it is able to recognize a complete contour by just touching even a part of a contour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available