4.5 Article

Aging, muscle fiber type, and contractile function in sprint-trained athletes

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 101, Issue 3, Pages 906-917

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00299.2006

Keywords

exercise; myosin heavy chain; single-fiber contractile properties; muscle strength

Ask authors/readers for more resources

Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol 101: 906-917, 2006. First published May 11, 2006; doi:10.1152/japplphysiol.00299.2006.-Biopsy samples were taken from the vastus lateralis of 18- to 84-yr-old male sprinters (n = 91). Fiber-type distribution, cross-sectional area, and myosin heavy chain (MHC) isoform content were identified using ATPase histochemistry and SDS-PAGE. Specific tension and maximum shortening velocity (V-o) were determined in 144 single skinned fibers from younger (18-33 yr, n = 8) and older (53-77 yr, n = 9) runners. Force-time characteristics of the knee extensors were determined by using isometric contraction. The cross-sectional area of type I fibers was unchanged with age, whereas that of type II fibers was reduced (P < 0.001). With age there was an increased MHC I (P < 0.01) and reduced MHC IIx isoform content (P < 0.05) but no differences in MHC IIa. Specific tension of type I and IIa MHC fibers did not differ between younger and older subjects. V-o of fibers expressing type I MHC was lower (P < 0.05) in older than in younger subjects, but there was no difference in V-o of type IIa MHC fibers. An aging-related decline of maximal isometric force (P < 0.001) and normalized rate of force development (P < 0.05) of knee extensors was observed. Normalized rate of force development was positively associated with MHC II (P < 0.05). The sprint-trained athletes experienced the typical aging-related reduction in the size of fast fibers, a shift toward a slower MHC isoform profile, and a lower V-o of type I MHC fibers, which played a role in the decline in explosive force production. However, the muscle characteristics were preserved at a high level in the oldest runners, underlining the favorable impact of sprint exercise on aging muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available