4.7 Article

Control of methionine biosynthesis genes by protein kinase CK2-mediated phosphorylation of Cdc34

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 63, Issue 18, Pages 2183-2190

Publisher

BIRKHAUSER VERLAG AG
DOI: 10.1007/s00018-006-6213-5

Keywords

AdoMet; cell cycle; gene expression; methionine biosynthesis; protein kinase CK2

Ask authors/readers for more resources

Methionine and metabolites such as S-adenosylmethionine (AdoMet) are of vital importance for eukaryotes; AdoMet is the main donor of methyl groups and is involved in expression control of the methionine biosynthesis genes (MET genes). Genome-wide expression profiling of protein kinase CK2 deletion strains of the budding yeast Saccharomyces cerevisiae has indicated a function for CK2 in MET gene control. Deletion of the regulatory CK2 subunits leads to MET gene repression, presumably due to an impaired phosphorylation of the ubiquitin-conjugating enzyme Cdc34, which controls the central MET gene transcription factor Met4. We show that CK2 phosphorylates Cdc34 at two sites and one of these, Ser282, has a significant impact on MET gene expression in vivo, and that high AdoMet levels inhibit CK2. The data provide evidence for a control of MET gene expression by protein kinase CK2-mediated phosphorylation of Cdc34, and appear to suggest a feedback control loop in which high AdoMet-levels are limiting CK2 activity and thus MET gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available