4.7 Article

A comparative study of the effect of desferrioxamine B, oxalic acid, and Na-alginate on the desorption of U(VI) from goethite at pH 6 and 5 °C

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 70, Issue 17, Pages 4356-4366

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2006.06.1565

Keywords

-

Ask authors/readers for more resources

Organic ligands affect the sorption and mobility of radionuclides in soils. Batch desorption experiments on goethite particles reveal the extent of uranyl desorption and hence bioavailability with different organic acids. The desorptive strength increases in the following order: background electrolyte < Na-alginate < desferrioxamine B (DFO-B) < oxalate. The sequence is consistent with decreasing molecular size and mass from alginate via DFO-B to oxalate. The concomitant Fe release in the desorption experiments indicates that desorption from goethite and not dissolution of goethite governs the mobility of adsorbed U(VI). A compilation of DFO-B surface excesses on goethite from our experiments together with literature values indicate that DFO-B adsorbs at a constant similar to 3% to the goethite surface. It is surprising that such a small fraction suffices to account for the considerable uranyl desorption and thus rernobilization of a radionuclide into solution. Oxalate displays higher surface concentrations but still lower than the determined uranyl surface excess. It follows that based on the high U(VI) stability constants, both organic ligands induce the desorption of uranyl species by increasing the chemical affinity of the aqueous phase. In the case of alginate, desorption of uranyl is weak and adsorbed alginate hampers any considerable detachment of U(VI) in the presence of the more potent ligands, DFO-B and oxalate. This inhibition is based on biosorption and in this respect polysaccharides in soils may retard and even halt the advance of actinides through the soil column. This hypothesis calls for further studies into the interaction of siderophores and polysaccharides with soil adsorbents and their role in the mobilization of contaminant metals. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available