4.7 Article

Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM

Journal

AGRICULTURAL SYSTEMS
Volume 89, Issue 2-3, Pages 457-477

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.agsy.2005.10.009

Keywords

agricultural system; crop growth model; evapotranspiration; soil water; soil temperature; wheat; maize; North China Plain

Ask authors/readers for more resources

Agricultural system models are potential tools for evaluating soil-water-nutrient management in intensive cropping systems. In this study, we calibrated and validated the Root Zone Water Quality Model (RZWQM) with both a generic plant growth module (RZWQM-G) and the CERES plant growth module (RZWQM-C) for simulating winter wheat (Tritictim aestivum L.) and maize (Zea mays L.) double cropping systems in the Northern China Plain (NCP), China. Data were obtained from an experiment conducted at Yucheng Integrated Agricultural Experimental Station (36 degrees 57'N, 11 degrees 36'E, 28 m asl) in the North China Plain (NCP) from 1997 to 2001 (eight crop seasons) with field measurements of evapotranspiration, soil water, soil temperature, leaf area index (LAI), biomass and grain yield. Using the same soil water and nutrient modules, both plant modules were calibrated using the data from one crop sequence during 1998-1999 when detailed measurements of LAI and biomass growth were available. The calibrated models were then used to simulate maize and wheat production in other years. Overall simulation runs from 1997 to 2001 showed that the RZWQM-C model simulated grain yields with a RMSE of 0.94 Mg ha(-1) in contrast to a RMSE of 1.23 Mg ha(-1) with RZWQM-G. The RMSE for biomass simulation was 2.07 Mg ha(-1) with RZWQM-G and 2.26 Mg ha(-1) with RZWQM-C model. The RMSE values of simulated evapotranspiration, soil water, soil temperature and LAI were 1.4 mm, 0.046 m(3) m(-3), 1.75 degrees C and 1.0 for RZWQM-G and 1.4 mm, 0.047 m(3) m(-3), 1.84 degrees C and 1.1 for RZWQM-C, respectively. The study revealed that both plant models were able to simulate the intensive cropping systems once they were calibrated for the local weather and soil conditions. Sensitivity analysis also showed that a reduction of 25% of current water and N applications reduced N leaching by 24-77% with crop yield reduction of 1-9% only. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available