4.6 Article

Pioglitazone induces apoptosis of macrophages in human adipose tissue

Journal

JOURNAL OF LIPID RESEARCH
Volume 47, Issue 9, Pages 2080-2088

Publisher

ELSEVIER
DOI: 10.1194/jlr.M600235-JLR200

Keywords

pPAR gamma; diabetes; metabolic syndrome; insulin resistance

Ask authors/readers for more resources

Metabolic syndrome and type 2 diabetes mellitus are associated with an increased number of macrophage cells that infiltrate white adipose tissue (WAT). Previously, we demonstrated that the treatment of subjects with impaired glucose tolerance (IGT) with the peroxisome proliferator-activated receptor gamma (PPAR gamma) agonist pioglitazone resulted in a decrease in macrophage number in adipose tissue. Here, adipose tissue samples from IGT subjects treated with pioglitazone were examined for apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. TUNEL-positive cells were identified, and there was a significant 42% increase in TUNEL-positive cells following pioglitazone treatment. Overlay experiments with anti-CD68 antibody demonstrated that most of the TUNEL-positive cells were macrophages. To determine whether macrophage apoptosis was a direct or indirect effect of pioglitazone treatment, human THP1 cells were treated with pioglitazone in vitro, demonstrating increased TUNEL staining in a dose- and time-dependent manner. Furthermore, the appearance of the active proteolytic subunits of caspase-3 and caspase-9 were detected in cell lysate from THP1 cells and also increased in a dose- and time-dependent manner following pioglitazone treatment. Pretreatment with a PPARg inhibitor, GW9662, prevented pioglitazone induction of the apoptotic pathway in THP1 cells. Differentiated human adipocytes did not show any significant increase in apoptosis after treatment in vitro with piolgitazone. These findings indicate that PPARg has distinct functions in different cell types in WAT, such that pioglitazone reduces macrophage infiltration by inducing apoptotic cell death specifically in macrophages through PPARg activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available