4.6 Article

Factors that affect Li mobility in layered lithium transition metal oxides

Journal

PHYSICAL REVIEW B
Volume 74, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.094105

Keywords

-

Ask authors/readers for more resources

The diffusion constant of Li in electrode materials is a key aspect of the rate capability of rechargeable Li batteries. The factors that affect Li mobility in layered lithium transition metal oxides are systematically studied in this paper by means of first-principles calculations. In close packed oxides octahedral ions diffuse by migrating through intermediate tetrahedral sites. Our results indicate that the activation barrier for Li hopping is strongly affected by the size of the tetrahedral site and the electrostatic interaction between Li+ in that site and the cation in the octahedron that shares a face with it. The size of the tetrahedral site is determined by the c-lattice parameter which has a remarkably strong effect on the activation barrier for Li migration. The effect of other factors such as cation mixing and doping with nontransition metal ions can be interpreted quantitatively in terms of the size and electrostatic effect. A general strategy to design high rate electrode materials is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available