4.6 Article

Microstructuring of stainless steel implants by electrochemical etching

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 41, Issue 17, Pages 5569-5575

Publisher

SPRINGER
DOI: 10.1007/s10853-006-0257-7

Keywords

-

Ask authors/readers for more resources

The effects of electrochemically enhanced etching on stainless steel coronary stent surfaces have been investigated in respect to their applicability as surface modifications prior drug-coating. Two methods have been investigated, one basing on grain boundary etching with diluted HNO3 and the other one on hydrochloric acid etching. The etching current was in the range of 30-200 mA which accounts for 0.34-2.28 mA/mm(2) surface. Grain boundary etching produced a micro-furrowed surface providing volume for the coating drug. The theoretical volume offered by the furrows was calculated on the basis of laser perthometry and was determined to be 0.146 mm(3)/cm(2). With the hydrochloric acid etching method it was possible to generate an evenly rough, terraced surface. Both surfaces have been coated with Rapamycin in ethanol (20 mg/mL) and examined under SEM after dilatation. It was shown that a uniform drug layer is maintained after dilatation of the stent and little flaking is visible. Quantification of the amount of Rapamycin yielded 21.4 mu g/mm(2) for the electropolished stents, 36.6 mu g/mm(2) for the grain-boundary etched stents and 27.7 mu g/mm(2) for the hydrochloric acid etching after dilatation. For the grain boundary etched stents an improved drug adhesion was found, while the hydrochloric acid etchings resulted in a deterioration of the adhesion properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available