4.7 Article

Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens

Journal

CHEMOSPHERE
Volume 65, Issue 1, Pages 43-50

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2006.03.012

Keywords

ethylenediaminetetraacetic acid; ethylenediaminedisuccinate; high biomass plants; metal tolerance; phytoremediation

Ask authors/readers for more resources

Chelate-induced phytoextraction with high biomass plant species has been proposed for the clean-up of heavy metal polluted soils. In the current work, the effect of the application of two different chelating agents, i.e. EDTA and EDDS, on the metal phytoextraction capacity of Brachiaria decumbens was studied. Although EDTA was, in general, more effective in soil metal solubilization, EDDS, a chelate less harmful to the environment, was more efficient inducing metal accumulation in R decumbens shoots than EDTA. Indeed, in a moderately heavy metal polluted soil, EDDS caused a 2.54, 2.74 and 4.30-fold increase in Cd, Zn, and Pb shoot metal concentration, respectively, as compared to control plants. In this same soil, EDTA caused a 1.77, 1.11 and 1.87-fold increase in Cd, Zn, and Pb shoot metal concentration, respectively, as compared to control plants. EDDS was also more effective than EDTA in stimulating the translocation of metals from roots to shoots. B. decumbens plants were able to grow in the metal polluted soils showing no visible symptoms of phytotoxicity, which suggests their metal tolerance. Finally, B. decumbens, a fast-growing, high biomass, aluminum tolerant plant species, that has a well-established agronomic system, fulfills most of the requirements for chemically-induced phytoextraction. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available