4.6 Article Proceedings Paper

Exotic quantum phases and phase transitions in correlated matter

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physa.2006.04.003

Keywords

quantum spin liquids; topological order; critical spin liquids; deconfined quantum critical points

Funding

  1. Direct For Mathematical & Physical Scien
  2. Division Of Materials Research [0844115, GRANTS:13632038] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a pedagogical overview of recent theoretical work on unconventional quantum phases and quantum phase transitions in condensed matter systems. Strong correlations between electrons can lead to a breakdown of two traditional paradigms of solid state physics: Landau's theories of Fermi liquid and phase transitions. We discuss two resulting exotic states of matter: topological and critical spin liquids. These two quantum phases do not display any long-range order even at zero temperature. In each case, we show how a gauge theory description is useful to describe the new concepts of topological order, fractionalization and deconfinement of excitations which can be present in such spin liquids. We make brief connections, when possible, to experiments in which the corresponding physics can be probed. Finally, we review recent work on deconfined quantum critical points. The tone of these lecture notes is expository: focus is on gaining a physical picture and understanding, with technical details kept to a minimum. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available