4.6 Article Proceedings Paper

Real-time triple product relighting using spherical local-frame parameterization

Journal

VISUAL COMPUTER
Volume 22, Issue 9-11, Pages 682-692

Publisher

SPRINGER
DOI: 10.1007/s00371-006-0064-9

Keywords

all-frequency relighting; precomputed radiance transfer; local frame; spherical wavelets; real-time rendering

Ask authors/readers for more resources

This paper addresses the problem of real-time rendering for objects with complex materials under varying all-frequency illumination and changing view. Our approach extends the triple product algorithm by using local-frame parameterization, spherical wavelets, per-pixel shading and visibility textures. Storing BRDFs with local-frame parameterization allows us to handle complex BRDFs and incorporate bump mapping more easily. In addition, it greatly reduces the data size compared to storing BRDFs with respect to the global frame. The use of spherical wavelets avoids uneven sampling and energy normalization of cubical parameterization. Finally, we use per-pixel shading and visibility textures to remove the need for fine tessellations of meshes and shift most computation from vertex shaders to more powerful pixel shaders. The resulting system can render scenes with realistic shadow effects, complex BRDFs, bump mapping and spatially-varying BRDFs under varying complex illumination and changing view at real-time frame rates on modern graphics hardware.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available