4.6 Article Proceedings Paper

Design issues for concrete reinforced with steel fibers, including fibers recovered from used tires

Journal

JOURNAL OF MATERIALS IN CIVIL ENGINEERING
Volume 18, Issue 5, Pages 677-685

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0899-1561(2006)18:5(677)

Keywords

recycling; waste management; tires; concrete, reinforced; structural design; flexural strength; fibers

Ask authors/readers for more resources

The writers are investigating the use of steel fibers, recovered from used tires (RSF), as concrete reinforcement, aiming at the development of design recommendations. This paper presents part of this research and examines initially an existing design guideline, developed by RILEM for steel fiber-reinforced concrete (SFRC), in order to assess the suitability of the guideline for the flexural design of concrete reinforced with RSF (RSFRC). This examination indicates that, although the RILEM guideline is in general suitable for the flexural design of RSFRC, there are some fundamental issues related to the evaluation of the tensile stress-strain behavior of SFRC that affect the accuracy of the guideline. Thus, based on this conclusion, a new approach is outlined for the evaluation of the tensile stress-strain behavior of SFRC and models are derived for different types of RSF and industrially produced fibers. These models are applied to the flexural design of concrete reinforced with RSF (RSFRC) and results are compared with those obtained by using the RILEM tensile stress-strain models. It is concluded that the model proposed in this study is more conservative and accurate than the RILEM models. Recommendations are also made on values of tensile strain to be used as the ultimate limit state, when predicting the resistance capacity of SFRC and RSFRC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available