3.8 Article Proceedings Paper

Mechanical tension and integrin α2β1 regulate fibroblast functions

Journal

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.jidsymp.5650003

Keywords

-

Categories

Ask authors/readers for more resources

The extracellular matrix (ECM) environment in connective tissues provides fibroblasts with a structural scaffold and modulates cell shape, but it also profoundly influences the fibroblast phenotype. Here we studied fibroblasts cultured in a three-dimensional network of native collagen, which was either mechanically stressed or relaxed. Mechanical load induces fibroblasts that synthesize abundant ECM and a characteristic array of cytokines/chemokines. This phenotype is reminiscent of late granulation tissue or scleroderma fibroblasts. By contrast, relaxed fibroblasts are characterized by induction of proteases and a subset of cytokines that does not overlap with that of mechanically stimulated cells. Thus, the biochemical composition and physical nature of the ECM exert powerful control over the phenotypes of fibroblasts, ranging from synthetic to inflammatory phenotypes. Interactions between fibroblasts and collagen fibrils are mostly mediated by a subset of beta 1 integrin receptors. Fibroblasts utilize alpha 1 beta 1, alpha 2 beta 1, and alpha 11 beta 1 integrins for establishing collagen contacts and transducing signals. In vitro assays and mouse genetics have demonstrated individual tasks served by each receptor, but also functional redundancy. Unraveling the integrated functions of fibroblasts, collagen integrin receptors, collagen fibrils, and mechanical tension will be important to understand the molecular mechanisms underlying tissue repair and fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available