4.6 Article

CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks

Journal

BMC BIOINFORMATICS
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2105-7-401

Keywords

-

Ask authors/readers for more resources

Background: One-dimensional protein structures such as secondary structures or contact numbers are useful for three-dimensional structure prediction and helpful for intuitive understanding of the sequence-structure relationship. Accurate prediction methods will serve as a basis for these and other purposes. Results: We implemented a program CRNPRED which predicts secondary structures, contact numbers and residue-wise contact orders. This program is based on a novel machine learning scheme called critical random networks. Unlike most conventional one-dimensional structure prediction methods which are based on local windows of an amino acid sequence, CRNPRED takes into account the whole sequence. CRNPRED achieves, on average per chain, Q(3) = 81% for secondary structure prediction, and correlation coefficients of 0.75 and 0.61 for contact number and residue-wise contact order predictions, respectively. Conclusion: CRNPRED will be a useful tool for computational as well as experimental biologists who need accurate one-dimensional protein structure predictions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available