4.6 Article

Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 95, Issue 1, Pages 192-198

Publisher

WILEY
DOI: 10.1002/bit.21014

Keywords

asymmetric reduction; chiral alcohol; in situ product removal technique (ISPR); substrate-coupled cofactor regeneration; stripping process; thermodynamic limitation

Ask authors/readers for more resources

Whole lyophilized cells of an Escherichia coli overexpressing the alcohol dehydrogenase (ADH-'A') from Rhodococcus ruber DSM 44541 were used for the asymmetric reduction of ketones to secondary alcohols. The recycling of the required nicotinamide cofactor (NADH) was achieved in a coupled-substrate process. In the course of the reaction the ketone is reduced to the alcohol and the hydrogen donor 2-propanol is oxidized to acetone by one enzyme. This leads to a thermodynamic equilibrium between all four components determining the maximum achievable conversion. To overcome this limitation an in situ product removal technique (ISPR) for the application with whole cells was developed. In this method the most volatile compound is separated from the reaction vessel by an airflow resulting in a shift of the equilibrium towards the desired secondary alcohol. The so-called stripping process represents a simple and efficient method to overcome the thermodynamic limitation in biocatalytic reactions. Employing this method, the conversion of selected biotransformations was increased up to completeness. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available