4.8 Article

Synthesis, structure, anion binding, and sensing by calix[4] pyrrole isomers

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 128, Issue 35, Pages 11496-11504

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0622150

Keywords

-

Ask authors/readers for more resources

The synthesis, structure, and anion binding properties of chromogenic octamethylcalix[4] pyrroles (OMCPs) and their N-confused octamethylcalix[4] pyrrole isomers (NC-OMCPs) containing an inverted pyrrole ring connected via alpha'- and beta-positions are described. X-ray diffraction analyses proved the structures of two synthesized isomeric pairs of OMCPs and NC-OMCPs. The addition of anions to solutions of chromogenic OMCPs and NC-OMCPs resulted in different colors suggesting different anion-binding behaviors. The chromogenic NC-OMCPs showed significantly stronger anion-induced color changes compared to the corresponding chromogenic OMCP, and the absorption spectroscopy titrations indicated that chromogenic OMCPs and NC-OMCPs also possess different anion binding selectivity. Detailed NMR studies revealed that this rather unusual feature stems from a different anion-binding mode in OMCPs and NC-OMCPs, one where the beta-pyrrole C-H of the inverted pyrrole moiety participates in the hydrogen-bonded anion-NC-OMCP complex. Preliminary colorimetric microassays using synthesized chromogenic calixpyrroles embedded in partially hydrophilic polyurethane matrices allow for observation of analyte-specific changes in color when the anions are administered in the form of their aqueous solutions and in the presence of weakly competing anions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available