4.5 Article

Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons

Journal

BRAIN RESEARCH
Volume 1108, Issue -, Pages 107-116

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2006.06.020

Keywords

adenosine; cell death; hibernation; cultured hippocampal cell; opioid; Syrian hamster

Categories

Ask authors/readers for more resources

The neuroprotective effects of hibernation-regulating substances (HRS) such as adenosine (ADO), opioids, histamine and thyrotropin-releasing hormone (TRH) on low-temperature-induced cell death (LTCD) were examined using primary cultured hamster hippocampal neurons. LTCD was induced when cultures were maintained at < 22 degrees C for 7 days. ADO (10100 mu M) protected cultured neurons from LTCD in a dose-dependent manner. The neuroprotective effects of ADO were reversed by both 8-cyclopenthyltheophilline (CPT; A(1) receptor antagonist) and 3,7-dimethyl-1-propargylxanthine (DMPX; A(2) receptor antagonist). Morphine (a non-selective opioid receptor agonist) was also effective in attenuating LTCD at an in vitro dose range of 10-100 mu M. The neuroprotective effects of morphine were antagonized by naloxone (a non-selective opioid receptor antagonist). In addition, although [D-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO; mu-opioid receptor agonist), [D-Pen(2,5)]-enkephalin (DPDPE; delta-opioid receptor agonist) and U-69593 (kappa-opioid receptor agonist) were also effective, LTCD of cultured hippocampal neurons was not affected by TRH. Furthermore, histamine produced hypothermia in Syrian hamsters and protected hippocampal neurons in vitro at 100 mu M. The neuroprotective effect of histamine was reversed by pyrilamine (H-1 receptor antagonist). Apoptosis was probably involved in LTCD. These results suggest that ADO protected hippocampal neurons in vitro via its agonistic actions on both A(1) and A(2) receptors, whereas morphine probably elicited its neuroprotective effects via agonistic effects on the mu-, delta- and kappa-opioid receptors. In addition, histamine also protected hippocampal neurons via its agonistic action on the H-1 receptor. Thus, HRS-like adenosine-, opioid- and histamine-like hypothermic actions would most likely induce neuroprotective effects against LTCD in vitro. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available