4.6 Article

Magnetic gas sensing using a dilute magnetic semiconductor

Journal

APPLIED PHYSICS LETTERS
Volume 89, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2349284

Keywords

-

Ask authors/readers for more resources

The authors report on a magnetic gas sensing methodology to detect hydrogen using the ferromagnetic properties of a nanoscale dilute magnetic semiconductor Sn0.95Fe0.05O2. This work demonstrates the systematic variation of saturation magnetization, coercivity, and remanence of Sn0.95Fe0.05O2 with the hydrogen gas flow rate, thus providing clear experimental evidence of the concept of magnetic gas sensing (using the magnetic property of a material as a gas sensing parameter). Based on the results of using hydrogen as an example for reducing gases, it is believed that any reducing gas capable of changing the oxygen stoichiometry of Sn0.95Fe0.05O2 can be detected using this method. Furthermore, this method presents an alternative gas sensing technology without the use of the electrical contacts. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available