4.8 Article

Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0603282103

Keywords

flexibility; nonlinear spectroscopy; fluorscein; molecular recognition

Ask authors/readers for more resources

The evolution of proteins with novel function is thought to start from precursor proteins that are conformationally heterogeneous. The corresponding genes may be duplicated and then mutated to select and optimize a specific conformation. However, testing this idea has been difficult because of the challenge of quantifying protein flexibility and conformational heterogeneity as a function of evolution. Here, we report the characterization of protein heterogeneity and dynamics as a function of evolution for the antifluorescein antibody 4-4-20. Using nonlinear laser spectroscopy, surface plasmon resonance, and molecular dynamics simulations, we demonstrate that evolution localized the Ab-combining site from a heterogeneous ensemble of conformations to a single conformation by introducing mutations that act cooperatively and over significant distances to rigidify the protein. This study demonstrates how protein dynamics may be tailored by evolution and has important implications for our understanding of how novel protein functions are evolved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available